
Collaboration in Open-Source Projects: Myth or Reality?

Yuriy Tymchuk, Andrea Mocci, Michele Lanza
REVEAL @ Faculty of Informatics – University of Lugano, Switzerland

ABSTRACT
One of the fundamental principles of open-source projects is that
they foster collaboration among developers, disregarding their geo-
graphical location or personal background. When it comes to soft-
ware repositories collaboration is a rather ephemeral phenomenon
which lacks a clear definition, and it must therefore be mined and
modeled. This throws up the question whether what is mined actu-
ally maps to reality.

In this paper we investigate collaboration by modeling it using
a number of diverse approaches that we then compare to a ground
truth obtained by surveying a substantial set of developers of the
Pharo open-source community. Our findings indicate that the notion
of collaboration must be revisited, as it is undermined by a number
of factors that are often tackled in imprecise ways or not taken into
account at all.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Version Control

General Terms
Software Repositories

Keywords
Software ecosystems, collaboration

1. INTRODUCTION
Figure 1 is not abstract art. It is a graph depicting the Pharo1

open-source community in terms of collaborating developers. It
contains 940 nodes, the developers, and 13,832 edges where each
edge represents the fact that two developers have collaborated, by
committing source code to the same project repository. The average
node degree is 29.43, which means each developer seems to have
collaborated with nearly 30 other developers. One might be tempted
to think that what we have here is a highly collaborative community,
an embodiment of the open-source philosophy [12].

1See http://pharo-project.org.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

Figure 1: Collaboration between all users of SmalltalkHub

We have mined the underlying data from SmalltalkHub2, a super-
repository (i.e., “a container of several projects developed in paral-
lel” [9]) similar to GitHub. The question that we investigate is “to
what extent does the collaboration information than can be mined
from software repositories represent the real and factual collabo-
rations?”. Researchers have proven that low quality data leads to
unreliable assumptions and fragile conclusions [7][1]. In the given
context a finding that would reveal that mined collaboration data is
unreliable would undermine any research effort in this direction.

To provide an answer to our question, we have established a
ground truth on collaboration by surveying several developers of
the same open-source community, and have compared existing ap-
proaches, as well as novel approaches, which model the concept of
collaboration to the ground truth by applying them to the data mined
from a super-repository. Our findings reveal that not only is collabo-
ration an ephemeral phenomenon, but that relying on a sole source
of information might lead to wrong conclusions. Also, we cannot
corroborate the previous findings of Meneely and Williams [10]. We
make the following contributions:

1. An investigation of the concept of collaboration in an open-
source community, performed by establishing a ground truth
through a survey among developers.

2. A comparison of state-of-the-art approaches, as well as cus-
tom approaches, with the ground truth, and a discussion on
why previous work in the area cannot be corroborated.

2See http://smalltalkhub.com

http://pharo-project.org
http://smalltalkhub.com

Figure 2: Ground truth collaboration graph with 74 developers and 163 collaboration edges.

2. RELATED WORK
Several existing approaches investigated the relationship between

developers and software repositories, assuming these are faithful
sources for models of collaboration and trying to mine and/or visu-
alize information from them.

Heller et al. [4] applied visualization techniques to user profiles
and repository metadata from GitHub. In particular, they produced
directed graphs in which nodes represent users geographic locations
and edges represent a) follower relationships, b) successive com-
mits, or c) contributions to the same project. Such visualizations are
used to express hypotheses about GitHub community.

De Souza et al. [2] presented a visualization approach to analyze
open-source software projects and relate the complexity of develop-
ment process with the complexity of artifacts under development.
Among all the visualizations, they also represent the relationship be-
tween project members who have contributed to the same modules
as a graph.

Jermakovics et al. [5, 6] proposed an approach to discover collab-
oration networks of open source developers from Version Control
Systems (VCS). The approach computes similarities among devel-
opers based on common file changes, constructs the network of
collaborating developers and applies filtering techniques to improve
the readability of the visualized network. The approach has been
validated in case studies of three different open-source projects (e.g.,
phpMyAdmin) to learn their organizational structure and patterns.
Results indicate that with little effort the approach is capable of
revealing aspects of those projects that were previously not known
or would require effort to discover manually via other means, such
as reading project documentation or forums.

The related work most similar to ours is the one by Meneely
and Williams [10], who studied if developer networks can be cor-
roborated with what a developer perceived as a collaboration. A
developer network is a graph, built from version control change logs,
where vertices represent a developer on the team; edges exist where
two developers made a version control commit to the same source
code file within one month of each other. To measure developer
perceptions, they conducted an online survey, personalized to each
developer of a team, based on that developer’s Social Network Anal-
ysis (SNA) metrics. Developers answered questions about other
members of the team, such as identifying their collaborators and
the project experts. While the outcomes of the analysis found some
discrepancies between the developer network and the survey, the
paper concludes that developer networks (as built from version con-
trol systems) are supported by developer perceptions with statistical
significance. They did not analyze super-repositories, but selected
project repositories.

In the following sections, we will try to replicate these findings
by conducting a similar analysis of developer collaboration in the
SmalltalkHub super-repository. We first establish a ground truth
through a developer survey, and then we compare it against different
models of collaboration built from the SmalltalkHub data.

3. ESTABLISHING A GROUND TRUTH
To assess the quality of any approach that tries to model the con-

cept of collaboration among developers, one needs to establish a
ground truth which allows approaches to be compared with. We ar-
gue, along the lines of Meneely and Williams [10], that establishing
a reliable ground truth in this context should be done by asking the
developers themselves.

Our focus is the Pharo open-source development community
which uses SmalltalkHub as project management super-repository,
featuring at the time of writing 1,033 developers and 1,212 projects
consisting of 111,351 packages.

We surveyed 25 developers of which 18 responded to our survey.
The survey consisted in having each developer indicate for 10 other
developers their level of agreement to the statement “I know and
have collaborated (by contributing source code) with the following
people”, providing a score on a 5-points Likert [11] scale: 1 (strongly
disagree), 2 (partially disagree), 3 (neutral), 4 (partially agree), and
5 (strongly agree). We processed the data by creating a graph where
nodes represent developers and weighted, directed edges represent
the strength of the collaboration between two developers. The graph
contained 74 nodes and 180 edges with the following distribution
of weights: 17 with weight 0 (strongly disagree), 10 with weight
1, 25 with weight 2, 43 with weight 3, 85 with weight 4. The total
weight of the edges is 529. Figure 2 depicts the graph after eliding
standalone nodes and edges with weight 0. Red vertices represent
surveyed developers, while the blue ones represent developers who
only appeared as subjects of the survey.

4. MODELING COLLABORATION
The graph described in the previous section (Figure 2) was ob-

tained by mining a complete SmalltalkHub snapshot taken at 2:02
AM of the 8th of December 2013. The 11.5 GB MongoDB dump
in question features 1,048 projects, 102,407 packages, and 940
developers.

4.1 Dataset Creation
The first thing that strikes the eye is that there is a problem of

multiple identities, i.e., a developer can have several user accounts.
We tackled this aliasing problem by first running an algorithm based
on the Levensthein distance [8] to detect similar user names, which
we then collapsed. Moreover, we manually analyzed the remaining
user names and discovered several other cases of multiple identities,
which we also collapsed. The resulting dataset thus contains 832
actual users. There is no way to guarantee that we removed all
double identities, which poses a first threat to this kind of work.

4.2 Collaboration Mining Approaches
We present diverse approaches to mine collaborations from our

dataset by selecting only developers who are present in the ground
truth collaboration graph depicted in Figure 2. Each approach thus
produces a graph which contains at most the same number of devel-
opers but with different connections and different weights, based on
the principles behind each approach. For each approach the weights
are normalized in the range 0-4 using quartile distribution, where
0 means absent edge (no collaboration) and 4 means “very strong
collaboration”.

We are modelling collaboration between developers as a graph,
and to associate a quality measure to each approach we will use
the most common measure of difference between graphs: graph
edit distance (GED). In our case it boils down to summing up,
for each edge, the absolute value of the weight difference to the
corresponding edge contained in the ground truth graph.

For each approach we describe the underlying key idea and report
the result in terms of nodes and edges present in the produced graph
and the GED to the ground truth graph.

4.2.1 Number of Common Projects
Key Idea: This approach counts the number of project reposi-

tories to which two developers have both committed source code
to.

Result: 68 nodes, 174 edges, GED: 201.
Reflections: The main drawback of this approach is that it ignores

when developers committed to the same project. In principle the
developers’ work timeliness might have never crossed. Also, it
ignores the extent to which a developer contributes to a project, e.g.,
1 commit has the same weight as 1,000 commits.

4.2.2 Number of Common Versions
Key Idea: This approach, similar to the one presented by de

Souze et al. [2], sums up for each project the minimum number of
versions contributed by two developers to the same project reposi-
tory.

Result: 68 nodes, 174 edges, GED: 165.
Reflections: This approach refines the previous one by quantify-

ing the extent of collaboration per project. This approach still has
the drawback of ignoring when developers committed to the same
project.

4.2.3 Number of Alternating Versions
Key Idea: This approach considers the timeline consisting of

versions, for a certain project, committed by two given developers.
This approach quantifies the collaboration between them by com-
puting the number of versions that have a preceding version by the
other author. In essence it tries to model the fact that the “paths” of
developers have crossed. As in the previous approach, we sum up
collaboration values for each project to obtain the final result.

Result: 68 nodes, 174 edges, GED: 171.
Reflections: This approach introduces a simple implicit timing

constraint that ensures that versions considered for collaboration are
interleaved. This approach still ignores explicit timing constraints.

4.2.4 Number of Alternating Versions in a Time Frame
Key Idea: This approach computes collaboration as the previous

one, but considering only versions committed in a time frame of 30
days.

Result: 62 nodes, 160 edges, GED: 189.
Reflections: This approach introduces a time frame constraint

that excludes interleaved versions that are too distant in time. We
adopted the span of the time frame of the approach by Meneely
and Williams [10]; however, this time frame could be in principle
adapted to the customs of a specific development community.

4.3 Reflections
The results of comparing the different collaboration mining ap-

proaches with respect to the ground truth in terms of the GED show
significant difference. In the best case, the GED amounts to 31% of
the total weight of the ground truth graph edges. We conclude that
data mined from software repositories is likely to not represent the
actual collaboration that is happening among developers. This also
means that any research that uses version control systems as a source
for collaboration studies must take into account this discrepancy.

5. DISCUSSION
In the previous section we discussed how all the different mod-

els of collaborations constructed from repository data are different
from the ground truth, in the sense that the graph edit distance is
significantly high. This finding conflicts with the results of Meneely
and Williams [10], that essentially stated that developer networks
matched the ground truth obtained by surveying developers. To un-
derstand the reasons behind this discrepancy, a fundamental aspect
to check is that the ground truth is constructed in the same way.

By inspecting the survey made by the authors, we found that the
way they measured collaboration to build the ground truth is inverted

with respect to us. In fact, the survey contained the following answer
options for the question “In the context of (name of project), what
is your connection to the following people?”:

A: I have never heard of this person before;

B: I recognize this name, but I don’t know much about them;

C: I know who this person is, but I have not worked with them
directly;

D: I have worked with this person on this project.

The only answer that states that developers collaborate is option
D, flattening collaboration to a boolean value. Instead, in our survey,
we had only one option that characterizes absence of collabora-
tion, while the four remaining ones represented increasing levels of
collaboration.

To compare our findings with the results of Meneely and Williams,
we adjusted our model by collapsing all the degrees of collaboration
into one, and thus representing collaboration as either present or
absent. As a result the total weight of the ground truth graph became
the same as the number of its edges, i.e., 174. If we consider the
simplest approach described in Section 4.2.1 (number of common
projects) then the GED against the ground truth model is 11, there-
fore close to it. This value is considerably low and it matches the
results of Meneely and Williams.

This shows that collaboration model mined from the software
repository is matching the actual situation only if we consider col-
laboration as a binary option that either exists or not. But when we
try to refine the collaboration model, and express different degrees
of collaboration, the data that we mine significantly differs from the
ground truth.

No Hope for Social Network Analysis? One might wonder
whether this type of research is intrinsically flawed. We believe it
is not, but that only looking at the versioning system is probably
too limited. To mine collaboration one should also factor inside
other sources of information, such as mailing lists and bug tracking
systems [3], where another major part of social interactions take
place.

6. THREATS TO VALIDITY
Construct validity threats are concerned with whether what one

measures is what one intends to measure. In this case they mainly
come from the way the survey was performed, i.e., we cannot be
certain that developers filled out the survey in a truthful way. We
tried to mitigate this threat by manually verifying parts of the ground
truth graph, as two of the authors of this paper are part of the Pharo
community and are therefore aware of a number of collaborations.
We could not find any stark contradictions in the ground truth graph.

Statistical conclusion validity threats concern the fact that there is
enough data to support claims. Clearly, such an experiment would
need to be repeated with a larger set of developers. Moreover, we
do not make any claims regarding statistical significance, but limit
ourselves to pointing out that there seems to be some limitations to
the way one can mine collaboration data. In essence, SNA must be
taken with a grain of salt.

External validity threats are concerned with the generalizability of
results. We only ran our experiments with one community, albeit a
fairly large one, relying on one specific super-repository, Smalltalk-
Hub. To confirm our findings we should repeat our experiment with
other communities as well.

7. CONCLUSION
We investigated to which extent the collaboration data mined

from software repositories is representing the actual collaboration
between developers of an open-source community. Through a sur-
vey we established a ground truth about the collaboration of devel-
opers of the Pharo open-source community. We ran a number of
approaches that tried to mine the collaboration from a repository, to
find that there is a significant difference to the ground truth. This
suggests that SNA based on the data mined from version control
systems are likely to not model real collaboration.

8. ACKNOWLEDGMENTS
We thank the Swiss National Science foundation for the support

through SNF Project “ESSENTIALS”, No. 153129.

9. REFERENCES
[1] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,

V. Filkov, and P. T. Devanbu. Fair and balanced? bias in
bug-fix datasets. In Proceedings of ESEC/FSE 2009, pages
121–130, 2009.

[2] C. de Souza, J. Froehlich, and P. Dourish. Seeking the source:
Software source code as a social and technical artifact. In
Proceedings of GROUP 2005, pages 197–206, New York, NY,
USA, 2005. ACM.

[3] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van
Deursen. Communication in open source software
development mailing lists. In Proceedings of MSR 2013,
pages 277–286, 2013.

[4] B. Heller, E. Marschner, E. Rosenfeld, and J. Heer.
Visualizing collaboration and influence in the open-source
software community. In Proceedings of MSR 2011, pages
223–226, 2011.

[5] A. Jermakovics, A. Sillitti, and G. Succi. Mining and
visualizing developer networks from version control systems.
In Proceedings of CHASE 2011, pages 24–31, New York, NY,
USA, 2011. ACM.

[6] A. Jermakovics, A. Sillitti, and G. Succi. Exploring
collaboration networks in open-source projects. In Open
Source Software: Quality Verification, pages 97–108.
Springer, 2013.

[7] A. Lamkanfi, J. Pérez, and S. Demeyer. The eclipse and
mozilla defect tracking dataset: a genuine dataset for mining
bug information. In Proceedings of MSR 2013, pages
203–206, 2013.

[8] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Cybernetics and Control
Theory, (10):707–710, 1966.

[9] M. Lungu, M. Lanza, T. Gîrba, and R. Heeck. Reverse
engineering super-repositories. In Proceedings of WRCE 2007,
pages 120–129. IEEE CS Press, 2007.

[10] A. Meneely and L. Williams. Socio-technical developer
networks: Should we trust our measurements? In Proceedings
of ICSE 2011, pages 281–290, New York, NY, USA, 2011.
ACM.

[11] A. N. Oppenheim. Questionnaire Design, Interviewing and
Attitude Measurement. Pinter, London, 1992.

[12] E. Raymond. The Cathedral and the Bazaar - Musings on
Linux and Open Source by an Accidental Revolutionary.
O’Reilly, 1999.

	Introduction
	Related Work
	Establishing a Ground Truth
	Modeling Collaboration
	Dataset Creation
	Collaboration Mining Approaches
	Number of Common Projects
	Number of Common Versions
	Number of Alternating Versions
	Number of Alternating Versions in a Time Frame

	Reflections

	Discussion
	Threats to Validity
	Conclusion
	Acknowledgments
	References

