
When QualityAssistant Meets Pharo
Enforced Code Critiques Motivate More Valuable Rules

Yuriy Tymchuk, Mohammad Ghafari, Oscar Nierstrasz
SCG @ Institute of Informatics - University of Bern, Switzerland

Abstract
Static analysis tools can aid in software quality assessment,
but are rarely used by software developers. Poor usage of
quality analysis tools not only means missed opportunities
for the quality of software systems, but also results in lit-
tle feedback, which in turn slows the improvements of the
quality rules themselves.

We introduced a set of intrusive quality plugins and in-
tegrated them into the Pharo IDE. This not only triggered a
feedback loop that led to improvements of the existing rules,
but also encouraged removal of some rules and integration
of new ones. Our analysis of changes to the rules suggests
that precise rules capturing a domain-specific logic are more
valuable than general ones.

1. Introduction
Quality of software systems is based not only on their func-
tionality, but also on maintainability aspects [3]. The latter
can be ensured by manually reviewing source code or can be
aided by static analysis tools. Such tools analyze source code
and detect suspicious patterns, relations or metrics. How-
ever, just like any piece of software, quality analysis tools
may have defects, miss important features or provide dis-
turbing functionality that obstructs the effectiveness of these
tools. While even detailed planning and rigorous testing can-
not ensure a perfect software project, it is common practice
to collect defect reports and usage experience feedback from
users to improve the future versions of a project. Usually
feedback loops and changes in quality analysis tools are not
common. Previous studies have shown that developers need
a way to customize how the tools work, or to change which
rules are used for source code analysis [8, 15]. Moreover,
many developers are not aware of the existence of quality

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

CONF ’yy Month d–d, 20yy, City, ST, Country
Copyright c© 20yy held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00
DOI: http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

analysis tools, and those who know about the tools prefer to
have them run automatically in the background [15].

Our main goal was to foster the usage of quality analysis
tools during the development of the fifth version of the Pharo
project1, an object-oriented programming language and a
full-fledged integrated development environment (IDE) [2].
SmallLint [11] is a quality analysis engine that is shipped
with the IDE since Pharo’s initial release a few years ago. At
the beginning of the development cycle SmallLint had 120
rules defining quality concerns in 6 categories such as bugs,
style, optimization, etc. A violation of a rule by some piece
of code is called a critic2.

From the first release of Pharo and until the beginning
of the fifth development cycle there was only one quality
analysis tool with a graphical user interface, namely Crit-
icBrowser. We distinguish on-demand tools, which must be
explicitly activated by the developer, from intrusive tools
that continuously perform quality checks and present critics
to developers. CriticBrowser is an on-demand tool that vali-
dates a set of source code packages using a set of SmallLint
rules to obtain the critics. We introduced QualityAssistant: a
series of plugins for development tools that use the available
SmallLint rules to provide an intrusive feedback about the
quality of the source code that is being browsed. In the pre-
vious study we have analyzed the reception of CriticBrowser
and QualityAssistant by Pharo developers [14]. The re-
sults have shown that the on-demand tool CriticBrowser
was rarely used, while QualityAssistant, which intrusively
reports critics about browsed code, obtained almost com-
pletely positive feedback from the developers.

Positive acceptance of QualityAssistant in combination
with ease of updating SmallLint led to many changes in
the quality rules. In the latest development cycle, over 60
SmallLint-related bug reports, feature requests and enhance-
ment suggestions were opened which is twice as many as the
average in previous years.

In this paper we summarize the changes introduced to the
rules after QualityAssistant was integrated into the Pharo

1 http://pharo.org/
2 Although the term “critique” would make more sense in English, tools in
the image have adopted the term “critic”.

http://pharo.org/

IDE and demonstrate how promotion of a quality analysis
tool together with a feedback loop can help in shaping the
quality rules themselves. We also analyze 3 rules that were
removed from the system and 15 new rules integrated into
Pharo or related projects. The relationships between them
show that developers prefer rules that are easy to understand
and capture important violations to those that express gen-
eral programming practices.

2. Changes to the Rules
QualityAssistant is a set of plugins for tools that are used
during the development process in Pharo. The main goal of
the plugins is to provide contemporary critics about the code
on which a developer is working. One of the most important
plugins resides in the code browser: a tool where developers
browse and edit code. This way developers are always aware
of the critics related to the code that they are working on,
which encourages them to report false critics and express
their ideas about enhancements.

According to our investigations the changes to the rules
after QualityAssistant was integrated can be naturally di-
vided into 3 categories: bug fixes and usability improve-
ments, removal of the rules or a part of their functionality,
and creation of new rules. In this section we describe the
most interesting use cases in each category.

2.1 Bug Fixes and Usability Improvements
QualityAssistant greatly increased the number of critics that
Pharo developers encounter during programming sessions.
This provoked complaints and bug reports about the critics
that provide false information. For example one rule checked
whether the category of a method is the same as the cate-
gory of the overridden method from a superclass. However
it also detected cases where a method has a category while
the overridden method is uncategorized. In other words the
rule suggested to remove the criticized method from its cat-
egory to match the status of the overridden method, which
is nonsense and violates another rule that checks whether all
methods are categorized.

Some bugs had more severe consequences. For example
a rule named “Modifies collection while iterating over it”
modified abstract syntax trees during source code validation.
This is completely unexpected and unacceptable behavior as
the validation process destroyed parts of the system, much
like a virus. The bug was detected only after the integra-
tion of QualityAssistant using which developers noticed a
strange behavior of the methods that they worked with. As
the bug was in a SmallLint rule — it also potentially affected
all methods validated by CriticBrowser. The bug was not de-
tected before although the rule is not new, which suggests
that CriticBrowser was seldom used.

Another group of rule changes is related to usability im-
provements. Most of them are caused by the inability of
a rule to explain a violation. For example the rule for de-

tecting usage of a “soon-to-be deprecated API” detected
a method, but did not specify which part exactly violates
the rule. Another rule suggests replacing detect:ifNone:
with anySatisfy:, but also reports a critic if contains:
is used. This happens because at some point the rule’s func-
tionality was updated, but its description was left unchanged.
While many usability problems were caused by poorly de-
veloped rules, there were some issues related to a com-
pletely wrong design of a rule. For example one rule detected
whether an abstract class has references. While a developer
gets a feedback about the class, the exact piece of code that
references it is unknown. This issue was resolved by shift-
ing validation from detecting abstract classes that are refer-
enced to detecting methods that reference an abstract class
and highlighting the source code where the abstract class is
accessed.

In some cases we went even farther than just enhancing
the explanations of critics. For example one rule detected a
class that has all subclasses with the same-signature meth-
ods, but does not itself define an abstract method with that
signature. The rule did not specify which method is missing
in the class. Not only did we add the method name to the
critic explanation, but also we created an action that auto-
matically creates the required abstract method. Automated
resolutions of critics contribute to the usability of the rules
by making them clearly actionable, as well as offering better
explanations.

In total over the course of development of Pharo 5 around
20 integration requests were related to improvements in
functionality or usability of quality rules.

2.2 Rule Removals
During the evolution of Pharo 5, three quality rules were
completely removed. All of them had the same properties,
namely they brought attention to common beginner mis-
takes, but were annoying to experienced developers. Addi-
tionally we allowed developers to react to the critics by send-
ing positive or negative feedback. The critics of all these
rules received a large amount of negative feedback. Next we
provide the description of each use case.

The most hated rule checked whether a yourself mes-
sage is present at the end of a message cascade [6]. The rule
is very important if a person does not know how a cascade
works, because one may expect to obtain the receiver of a
cascade as a result while a cascade actually returns the result
of the last message. If a developer is aware of this, there is lit-
tle benefit in being reminded that there is a cascade without a
yourself message at the end. There are many cases where
this message is not necessary. Moreover, one may want to
actually obtain the result of the last message in the cascade
instead of the receiver. In this case yourself has to be omit-
ted on purpose.

The second rule detected whether the messages like
ifTrue: have a block as their argument. This is another
useful rule for beginners that annoys experienced develop-

ers. None of the users of Pharo 5 found it useful, and the
rule reported critics only about special cases that worked
well without blocks. For example:

size = 1 ifTrue: ’:’ ifFalse: ’s:’

is a perfectly valid piece of code that is easier to read com-
pared to the version with blocks, and executes faster as there
is no need to unwind block contents.

The last rule detected methods that reference an abstract
class. This rule was previously modified and so is also de-
scribed in the previous subsection. In essence the rule raises
the programmer’s awareness of possible instantiations of
an abstract class which can lead to a potential invocation
of an abstract method. However this also includes the us-
age of utility methods on the class-side. Moreover abstract
classes often provide factory methods [5] that return their
subclasses. For example UIManager default will return
an instance of a concrete UIManager subclass that is default
for the current setup. It is also not possible to only focus
on the new messages that are sent to the abstract classes,
for example String new creates an instance of a concrete
ByteString class which is a subclass of an abstract String
class.

In all cases the probability of a critic being an actual
issue was much lower than the negative impact that the issue
would cause if it was present. However all the rules from
this subsection had an educational emphasis which means
that they may be useful for a teaching configuration of the
system.

2.3 Rule Addition
As developers became more aware of the critics in their
code, new rules were introduced to inform developers about
the violations. Most of the rules were requested by the Pharo
community or the developers of different frameworks and
we ourselves implemented many of them. Originally all the
rules were packaged together with the SmallLint engine. We
tried to put each new rule in the same package that contains
the code related to that rule. For example if a rule describes
how a testing framework should be used, we package it with
that framework: this way if someone uses the framework he
or she will also get critiques from the dedicated rules.

Only a few rules were placed in the SmallLint package.
Two of them are rules related to Pharo core functionality.
One of them suggests to use ifNil: and ifEmpty: instead
of ifNilDo: and ifEmptyDo: as they will be deprecated
soon. Another one suggests to replace Smalltalk at:with
Smalltalk globals at:, because of changes in the core
API. The other group of rules captures new architectural
constraints of SmallLint rule classes and so was packaged
in the SmallLint package.

All the other rules are packaged together with their re-
lated projects. For example a rule that warns about a us-
age of special BoxedFloat64 and SmallFloat64 classes
was shipped with the Kernel package. Another rule that sug-

gests to use assert: a equals: b instead of assert: a
= b was added to the SUnit package. First of all this en-
hances modularity of the system: one can simply unload
the SUnit package and load another testing framework. In
this case the SUnit-specific rules will be uninstalled together
with the package. Additionally this packaging strategy en-
courages the maintainers of the package to also maintain the
rules that are related to their code.

Rules were introduced to three projects that are being de-
veloped in parallel with Pharo and have their own reposito-
ries. Two of these projects, Rubric and Roassal [1], required
rules to check the order of method invocations. Both projects
make use of builder pattern [5] where the order in which the
builder methods are invoked impacts the final result. For this
purpose a special type of rule was introduced that allowed
developers to easily specify the required order.

Rules for the third project, Glamorous Toolkit3, were dif-
ferent by their nature. One of the rules detects classes that
have extension methods coming from the toolkit but do not
define special methods that are used to show examples about
these classes. Other rules relate to performance issues that
could arise during the definition of the extensions. In partic-
ular computation of the values can be delayed by passing ex-
pressions wrapped in blocks and allowing a builder to lazily
evaluate the block as late as possible.

The 15 new rules can be grouped into five distinct cate-
gories based on their nature, impact of their critics, and ways
to resolve them.

Migration rules describe a transformation from one API to
another and can automatically rewrite code. For example
usage of ifNil: instead of ifNilDo:. If violations of
these rules are ignored, in the future the code may fail
because of the removal of the old API.

Private access rules warn about usage of functionalities
that are not meant for public access. For example
SmallFloat64 is a system-specific class that is present
to ensure good performance of floating point calculations
on 64-bit systems, but it should not be used directly in
the code. Violations of these rules can be ignored only
under very special circumstances, such as deliberate low-
level programming, but this may lead to unexpected er-
rors, non-portable code, or even issues in the future as a
private functionality evolves more frequently.

Invocation order rules detect if the order of message sends
makes sense. For example if the edges: message is sent
to a graph builder before the nodes: method is used to
specify nodes, the edges will not be initialized. If critics
of these rules are ignored the desired result will not be
obtained.

Class structure rules capture design guidelines that should
be followed while subclassing or extending classes. They

3 http://gtoolkit.org

http://gtoolkit.org

check whether certain methods are overridden, or that
particular methods are present if certain conditions are
met. The rule that checks if the hash method is overrid-
den together with the “=” method belongs to this cate-
gory. If left unchanged the violations will either result in
an unexpected functionality, or cause a rejection of in-
tegration as the project’s design guidelines are not fol-
lowed.

Lazy evaluation rules in our case were represented by a sin-
gle pair of rules in Glamorous Toolkit. They detect ex-
pressions that could be evaluated lazily to exploit the de-
sign of Glamorous Toolkit. Violations of these rules will
result in poor performance and will complicate exception
handling, if left unchanged.

All of the added rules target exact violations such as a
wrong API usage, violation of design conventions or ineffi-
cient code. The violations are related to the project where the
rules belong rather than some general OOP practices. More-
over, most of the violations will certainly result in defects
and so cannot be ignored.

Another important aspect worth mentioning is the imple-
mentation of the rules based on their type. Migration rules
can be easily expressed with the refactoring browser [12]
rewrite engine. For example use of the old SUnit API can be
easily detected with the expression:

self should: [‘‘@object]

and changed to the new API with:

self assert: ‘‘@object

Private access rules can simply detect access to entities
with a certain annotations, which is implemented in many
languages through access modifiers. To specify invocation
order a special DSL like usage contracts [9] can be used.
Class structure can be easily checked by directly manipulat-
ing class objects i.e., by obtaining a list of methods defined
in a class, and validating whether they adhere to certain re-
quirements. To support lazy evaluation rules we worked with
raw AST nodes: we identified builder message nodes that
should receive blocks as arguments and verified whether the
argument nodes are literals or blocks. If the arguments are
represented buy other kinds of expression nodes we gener-
ate a critic. We believe that there is no single approach or
DSL to define quality rules but rather many different ones
that target a certain type of violation and provide a different
level of actionability.

2.4 Structural Changes
The introduction of QualityAssistant triggered some minor
structural changes in SmallLint rules. Some duplicated func-
tionality was removed from certain rules. For example one
rule checked whether = 0 is used instead of isZero and
= nil is used instead of isNil. But another rule also in-
cluded the latter case and additionally checked if ∼= nil is

used instead of notNil. Duplication became easy to detect
by shifting the critics from the rule-centric view in the Critic
Browser to an entity-centric view in the QualityAssistant.
For example previously a developer was using a browser
that was displaying violations per each rule making it com-
plicated to notice among many critiques that the same vio-
lation is reported by two rules. On the other hand if a de-
veloper browses a method that contains = nil, critics from
both rules inform that isNil should be used instead, making
the duplication evident.

Some rules were split into multiple ones to allow better
filtering or performance decisions. For example a rule that
checks whether a sent message is not implemented was split
into two: a fast one that checks whether a message sent to
self or super is not implemented in the hierarchy, and a slow
one detecting whether a method with the selector of a mes-
sage is implemented anywhere in the system. This way the
slow rule may be excluded from the live feedback of Qual-
ityAssistant to avoid lengthy delays during development pro-
cess, while the fast rule will still detect a subset of critiques.

3. Related Work
Sadowski et al. [13] reported a study with a similar setup by
introducing the Tricorder quality analysis tool into Google’s
development process. Tricorder is also an intrusive tool that
reports critics during a pre-commit review [10]. However, in
their experiment Tricorder was the first tool that was intro-
duced in the development process while we are able to make
a comparison with CriticBrowser, which was already present
in Pharo before. While the authors focus on the principles
of the feedback loop and the rules were refined to minimize
negative feedback, they do not provide information about the
changes themselves.

Hora et al. [7] conducted an experiment to determine
whether domain specific rules detect more bugs than generic
ones. They analyzed critics of the historical data of a project,
and correlated them with bugs from the project’s bug tracker.
The experiment has shown that more bugs were related
to domain specific rules in comparison with generic rules.
Similarly our results show higher values of domain-specific
rules, as the removed ones are generic object-oriented rules,
while the added ones are related to a specific domain.

Lozano et al. [9] developed the uContracts language to
specify structural regularities in software systems. The au-
thors motivate their decisions with a previous experience
with the SOUL [4] language: developers were reluctant to
define structural regularities in SOUL as they had to learn
a new programming language. For this reason the authors
analyzed the most common structural regularities and de-
signed uContracts semantics to be very similar to the pro-
graming language that developers use. Many rules from our
use case conform to the structural regularity types defined by
uContracts. This correlation can be investigated even further

by encouraging developers to use uContract to develop new
rules.

Yamashita and Moonen [15] surveyed professional soft-
ware developers to identify the current status and require-
ments of static quality analysis. The authors discovered that
almost one third of the surveyed developers did not know
about the existence of quality critics. We addressed this is-
sue with QualityAssistant, which in turn triggered numerous
changes to the rules. One of the highly-ranked requirements
was to be able to “define and customize detection strategies”.
SmallLint provides a possibility to add new rules and in our
case more than a dozen rules were added. However most of
the rules were implemented by us following the requests of
developers. This leaves us with a question on how to help
developers to create rules themselves.

4. Conclusions and Future Work
We have introduced a set of intrusive plugins called Qual-
ityAssistant into the IDE used by Pharo developers. The plu-
gins educated developers about the the existence of quality
rules and issues in their code. At the same time QualityAs-
sistant started a feedback loop that triggered many changes
to SmallLint rules.

The analysis of the changes made after integration of
QualityAssistant shows that many important bugs in rules
were detected and fixed. Unproductive or annoying rules
were removed, while new helpful rules were added. The
analysis of the added and removed rules helps us to identify
the features that are important for developers in the rules,
namely:

1. clear explanation of a critic that exposes the source of
violation;

2. suggestion of a solution or automated resolution of an
issue;

3. high impact of the critic i.e., critics that detect guaran-
teed bugs are valued more than the ones that warn about
hypothetical problems.

Moreover the new rules introduced into the system capture
domain-specific properties of the projects that they repre-
sent. This suggests two distinct types of rules:

Internal rules are specific to a team, company or commu-
nity and focus more on the general questions. These rules
may define style, focus on common metrics like num-
ber of methods in a class or describe an architecture of
a project. Their value comes from capturing agreements
that are already present in the community. To change
them one has to negotiate the change of the principles
in the community.

External rules come together with a library or framework
and act as documentation. This type of rule supports mi-
gration to a new version of API and detects improper
or inefficient usage of a library. The value of these rules

comes from automatically providing crucial information
about possible bugs and their solutions as early as possi-
ble. Maintainers of projects should be in charge of chang-
ing the related rules similarly to how documentation is
changed.

In the near future we expect to obtain feedback about the
rules from even more users which should allow us to enhance
the understanding of the needs regarding quality rules. This
includes the feedback about the new rules as at the moment
we cannot be sure if all of them are well-received.

Another important question to investigate is why develop-
ers are not implementing the rules themselves, as most of the
new rules were developed by us. We conjecture that first of
all developers are not implementing their own rules because
they are not used to it. We also believe that the main obstacle
is the means to define the rules themselves. Usually they are
very complicated and each new way to define rules tries to be
better than all the other ones. By analyzing the rules we cre-
ated, we can see that different approaches may be suitable for
different kinds of rules. Investigating more rules and the dif-
ficulties that developers encounter while defining them will
help us to draw more concrete conclusions.

Acknowledgments
We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Analysis” (SNSF project No. 200020-162352, Jan
1, 2016 - Dec. 30, 2018).

References
[1] V. P. Araya, A. Bergel, D. Cassou, S. Ducasse, and J. Laval.

Agile visualization with Roassal. In Deep Into Pharo, pages
209–239. Square Bracket Associates, Sept. 2013. ISBN 978-
3-9523341-6-4.

[2] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,
and M. Denker. Pharo by Example. Square Bracket As-
sociates, 2009. ISBN 978-3-9523341-4-0. URL http://
pharobyexample.org.

[3] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evalu-
ation of software quality. In Proceedings of 2nd International
Conference on Software Engineering, pages 592 – 605. IEEE
Computer Society Press, 1976.

[4] C. De Roover, C. Noguera, A. Kellens, and V. Jonckers.
The soul tool suite for querying programs in symbiosis with
eclipse. In Proceedings of the 9th International Conference
on Principles and Practice of Programming in Java, PPPJ
’11, pages 71–80, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0935-6. doi: 10.1145/2093157.2093168. URL
http://doi.acm.org/10.1145/2093157.2093168.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addi-
son Wesley Professional, Reading, Mass., 1995. ISBN 978-
0201633610.

[6] A. Goldberg and D. Robson. Smalltalk 80: the
Language and its Implementation. Addison Wesley,

http://pharobyexample.org
http://pharobyexample.org
http://doi.acm.org/10.1145/2093157.2093168

Reading, Mass., May 1983. ISBN 0-201-13688-0.
URL http://stephane.ducasse.free.fr/FreeBooks/
BlueBook/Bluebook.pdf.

[7] A. Hora, N. Anquetil, S. Ducasse, and S. Allier. Domain spe-
cific warnings: Are they any better? In Software Maintenance
(ICSM), 2012 28th IEEE International Conference on, pages
441–450, Sept 2012. doi: 10.1109/ICSM.2012.6405305.

[8] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why
don’t software developers use static analysis tools to find
bugs? In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 672–681. IEEE
Press, 2013. ISBN 978-1-4673-3076-3. URL http://dl.
acm.org/citation.cfm?id=2486788.2486877.

[9] A. Lozano, K. Mens, and A. Kellens. Usage contracts: Of-
fering immediate feedback on violations of structural source-
code regularities. Science of Computer Programming, 105:73
– 91, 2015. ISSN 0167-6423. doi: 10.1016/j.scico.2015.01.
004. URL http://www.sciencedirect.com/science/
article/pii/S016764231500012X.

[10] P. C. Rigby and C. Bird. Convergent contemporary software
peer review practices. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE
2013, pages 202–212, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2237-9. doi: 10.1145/2491411.2491444.

URL http://doi.acm.org/10.1145/2491411.2491444.

[11] D. Roberts, J. Brant, R. E. Johnson, and B. Opdyke. An
automated refactoring tool. In Proceedings of ICAST ’96,
Chicago, IL, Apr. 1996.

[12] D. Roberts, J. Brant, and R. E. Johnson. A refactoring tool for
Smalltalk. Theory and Practice of Object Systems (TAPOS),
3(4):253–263, 1997.

[13] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and
C. Winter. Tricorder: Building a program analysis ecosys-
tem. In Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ICSE ’15, pages 598–
608, Piscataway, NJ, USA, 2015. IEEE Press. ISBN 978-1-
4799-1934-5. URL http://dl.acm.org/citation.cfm?
id=2818754.2818828.

[14] Y. Tymchuk. What if clippy would criticize your code? In
BENEVOL’15: Proceedings of the 14th edition of the Belgian-
Netherlands software evoLution seminar, Dec. 2015. URL
http://yuriy.tymch.uk/papers/benevol15.pdf.

[15] A. Yamashita and L. Moonen. Do developers care about
code smells? an exploratory survey. In 2013 20th Working
Conference on Reverse Engineering (WCRE), pages 242–251,
Oct 2013. doi: 10.1109/WCRE.2013.6671299.

http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://www.sciencedirect.com/science/article/pii/S016764231500012X
http://www.sciencedirect.com/science/article/pii/S016764231500012X
http://doi.acm.org/10.1145/2491411.2491444
http://dl.acm.org/citation.cfm?id=2818754.2818828
http://dl.acm.org/citation.cfm?id=2818754.2818828
http://yuriy.tymch.uk/papers/benevol15.pdf

	Introduction
	Changes to the Rules
	Bug Fixes and Usability Improvements
	Rule Removals
	Rule Addition
	Structural Changes

	Related Work
	Conclusions and Future Work

