
Treating Software Quality as a First-Class Entity
Yuriy Tymchuk

REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract—Quality is a crucial property of any software system
and consists of many aspects. On the one hand, quality measures
how well a piece of software satisfies its functional requirements.
On the other hand, it captures how easy it is to understand, test
and modify a software system. While functional requirements
are provided by the product owner, maintainability of software
is often underestimated. Currently software quality is either
assessed by experts, or presented as a list of rule violations
reported by some kind of static analyzer. Both these approaches
are working with a sense of quality outside of the software itself.

We envision quality as a first-class entity of a software system, a
concept that similarly to the functionality is persistent within the
software itself. We believe that each entity or a group of software
entities should be able to tell about its quality, reasons of bad
smells and ways to resolve them. This concept will allow to build
quality aware tools for each step of the software development
lifecycle.

On our way to the concept of quality as a first class entity, we
have created a code review approach where software quality is
the main concern. A reviewer makes decisions and takes actions
based on the quality of the reviewed system. We plan to continue
our research by integrating advanced quality rules into our tools
and devising new approaches to represent quality and integrate
it into everyday workflow. We started to develop a layer on top
of a software model responsible for the quality feedback and
allowing to develop quality-aware IDE plugins.

I. Introduction

People always tried to assign some meaning of quality
to things that matter to them. Software is not an exception.
Boehm et al. [1] define two main categories of software
quality: Usability and Maintainability. The former concerns
how a software complies to its functional requirements. The
latter reflects how the software itself is designed, how complex
is understanding, testing and modifying the software. We focus
on maintainability, which is directly connected with software
architecture design and coding style. Well-designed software
requires less effort to maintain, while common good coding
style can improve the readability of code.

Designing high-quality software requires decision making
at different levels of abstraction: From style used in code
writing, to architecture of the whole software system and its
components. For example, Riel [2] describes heuristics that
should be followed to achieve a good quality object-oriented
design. Gamma et al. [3] provide most frequently used de-
sign patterns in object-oriented languages with examples in
C++ and Smalltalk. Kent Beck [4] describes the best coding
practices specific for Smalltalk programming language.

Software development is a complex process, and even good
quality practices cannot guarantee that through all its life cycle
the project will not accumulate bad design decisions. It is
important to be able to detect and improve low quality parts

of a system. For this purpose Martin Fowler [5] describes
bad code smells and how to solve them through refactoring
techniques. A person possessing knowledge of these guidelines
can perform a review of the software system, by manually
assessing its quality and improving the parts that in his opinion
have low quality. This practice is formally called a code
review. Manually reviewing code is time-consuming [6]. To
reduce a reviewers’ effort static analysis tools can be used
to automatically detect bad patterns in source code or to
validate a system against some metrics. For example, Lanza
and Marinescu [7] define rules for composite metrics that can
be used to detect complex design smells by aggregating values
of simpler metrics.

Currently software quality is either assessed by the reviewer
who follows the guidelines, or by a tool which generates a
list of issues. In both cases the quality assessment happens
outside of the software system and remains outside of it. Our
goal is to create a rich model of a quality concept that can
be used by various development tools. We believe that the
quality model should 1) provide cost and value information
about critics 2) allow adaptation rules must to a given project
3) is aware of software scopes and development lifecycle.

II. RelatedWork
State of the art of software maintainability can be split in

two categories. One of them consists of tools and algorithms
designed to help detecting quality issues. Some of them
automatically identify faulty software parts, others provide an
alternative overview of the software system in order to improve
comprehension. In the second category we assign approaches
that try to embed automated issue detections into the code
review process.

A. Detecting Quality Issues

Common bad programming practices can be detected au-
tomatically with static code analysis [8], [9]. At the moment
there are many static code analysis tools focusing on different
languages and different categories of quality issues. Lint [10]
is one of the pioneering tools and it can be used to check C
programs. FindBugs [11] is the most popular static analysis
tool for Java. CheckStyle1 and PMD2 are also often used
to find defects in Java code, although the latter one has a
support for different programming languages. All these tools
have common features. They run on static data, either source
code or compiled byte code. They have predefined rules that
are used to find defects. Most tools categorize quality issues.

1http://checkstyle.sourceforge.net
2http://pmd.sourceforge.net



Some tools assign severity value to each issue, and allow to
extend a set of quality rules by manually entering new ones.
Johnson et al. [12] investigated why software developers do
not use static analysis tools to find bugs. They surveyed 20
developers that used FindBugs, Lint, CheckStyle, PMD and
other similar tools. All survey participants felt that use of static
analysis tools is beneficial, but false positives and the way in
which the warnings are presented discouraged usage of the
tools.

Another category of analyzers relies on software metrics,
thresholds and fuzzy logic to detect more complex issues
in software architecture. Marinescu [13] implemented the
IPLASMA tool which uses a metric-based approach to detect
code smells. Its detection strategies capture deviations from
good design principles and aggregate metrics and compare
their values against absolute and relative thresholds. Moha et
al. [14] present DECOR, a methodology that defines all the
steps needed to specify and detect code design smells. They
also present DETEX, a tool which implements the DECOR
approach. Khomh et al. [15] developed a bayesian approach
which calculates the probability of an entity violating a certain
design rule. Despite giving a better overview of the status of
the underlying system, these rules are still presented as a list
of issues, which does not provide a good way of understanding
which parts of the system have more issues and need attention
in the first place. These analyzers rely on a deviation from the
average values in a system, whereas we believe that developers
should be able to define the thresholds themselves.

Caserta and Zendra [16] provide an exhaustive survey of
source code visualization techniques. These techniques aim
to increase the awareness of a person reviewing the code, by
mapping different metrics on a visualization. While these tools
indeed improve understanding of the underlying code, they
miss an automated analyzer, that could tell a developer some
information about the quality of the system and the parts that
compose it.

Static code analysis tools are often embedded into Integrated
Development Environments (IDEs). This allows to inform the
developer about quality issues in the same environment that
he or she uses to program. Some IDEs provide live feedback
about coding practices violations as-you-type. Popular Java
IDEs Eclipse3 and NetBeans4 use FindBugs reports. IntelliJ
IDEA5 uses a custom defect detection subsystem. Some tools
also allow automatic fixes for certain issues. These tools
are not used while the developer reviews his changes before
committing a new version of code. In the case of the code
quality concept, a developer could be provided not only with
quantitative changes, but also with some estimation whether
they improve general quality, or decrease it.

Static analysis can be also used during continuous integra-
tion (CI) [17]: After each integration of a change, the software
system is automatically built and validated with respect to

3http://www.eclipse.org
4https://netbeans.org
5https://www.jetbrains.com/idea/

different criteria. One of the most popular systems used for this
practice is SonarQube [18]. It defines seven axis of quality as
follows: Architecture and Design, Duplications, Coding Rules,
Comments, Unit tests, Potential bugs and Complexity.

B. Reviewing Code

Static code analysis can aid in detection of low quality
software parts. Another approach used to ensure and improve
the quality of a project is code review [19]. During this activity
developers are reading the code that does not belong to them in
order to familiarize with it and find possible defects. Modern
code review is usually performed on a patch before it is
integrated into the system, in order to find and fix faulty parts
on the early stage.

While code review provides good results, Bacchelli and
Bird [20] discovered that reviewers spend a lot of time to
detect trivial issues instead of focusing on the important
ones. These trivial issues are usually related with the coding
guidelines, and possibly can be detected automatically to save
the time of reviewers. During a code review session, tools
like Review Bot [21] use static analysis reports to improve
reviewers experience by pointing out parts that violate some
rules. However as stated before, there is no way to understand
whether a change improved something, or if it contains any
violations that are strictly forbidden to be integrated.

The Tricorder project adds quality reports to the code review
tool used by Google [22]. Reviewers can mark quality critics
as false positives and provide an optional textual feedback
that will be sent to the quality rule developer. Usage data is
collected and the Tricoder team pursues the goal to maintain
the amount of false positives under 10%. Issues that are post-
poned for future resolution are also treated as false positives.
And while the low percentage of ignored critics results in high
tool acceptance, some of the quality rules are removed as they
are not trivial, and require longer time to resolve them.

III. Modeling Quality of Software Systems

We want to address the limitations of current approaches
to define, detect and ensure software quality. We envision
quality as a first-class entity of a software system. This concept
allows us to focus on quality itself as opposed pragmatic rule
violations, and it is required to compare entities either in one
project or across projects, localize parts with higher rating of
severity, or summarize the quality of an entire system. In this
way, we will be able to build quality-aware tools that provide
better understanding of a software system. These tools should
be used throughout the entire development cycle and provide
an aid in writing and reviewing code.

A. ViDI

As a first milestone towards a full fledged concept of soft-
ware quality we developed an approach called Visual Design
Inspection (ViDI) [23]. It augments code review with software
quality evaluation, and more general design assessment, as
a first class citizen and as the core concern of code review.
It uses visualization to drive the quality assessment of the



Fig. 1: ViDI main window, composed of 1) quality rules pane; 2) system overview pane; 3) critics of the selected entity; 4) source code of
selected entity.

reviewed system, exploiting data obtained through static code
analysis. Alongside the approach we have also built a tool with
the same name [24].

ViDI is implemented in Pharo6, a modern Smalltalk-
inspired programming language and full-fledged object-
oriented development environment. ViDI is available as an
MIT-licensed free software at http://vidi.inf.usi.ch. ViDI uses
SmallLint [25] to support quality analysis and obtain reports
about issues concerning coding style and design heuristics.
The version of SmallLint that we use has 115 rules organized
into 7 different categories, from simple style checks to more
complex design flaws. Rules concern specific code entities like
packages, classes or methods. A violation of a rule by an
entity, is called a critic about that entity. For example, elements
with no critics are colored in gray. The higher the amount of
critics, the brighter is the red coloring of the entity.

The reviewed system is presented in a visual environment
augmented with automatically generated quality reports. The
environment is self-contained: The reviewer can navigate,
inspect and improve the system from inside ViDI. As a system
can be changed during the review session, ViDI automatically
re-runs the static analysis tool, to keep the reviewer updated
about the current system state. The main window of ViDI is
depicted in Figure 1.

While reviewing a software system with ViDI, the reviewer
is presented with a visual representation of the system, as well
as the summary about size of the reviewed system and the
number of present issues. In our first prototype we used a
city-based code visualization [26], [27], depicting classes as
platforms on which their methods are represented as blocks
and stacked together forming a visual representation of a
building. ViDI imbues the visualization with the quality critics
making it easy to understand where are the bad parts, and how
severe the critics are. The reviewer can inspect each single
entity to see the detailed critic descriptions, and the source

6http://pharo.org

code. Some of the critics can be resolved automatically, by
code transformation, or the reviewer can manually edit the
code critics will be re-evaluated to take into account the latest
changes. The reviewer can also filter which critics he wants
to see and which ones will be hidden either by a quality rule
or by a group of rules.

B. Ongoing Work and Future Work

We have performed a couple of ViDI use-case studies in our
group. The analysis of them has shown that the current static
analysis tools used by ViDI are lacking important features
needed to detect real issues.

Fuzzy rules. One of the limitations of current tools is the
boolean nature of validation results. An entity can either vio-
late a rule or not. To solve this we are currently investigating
the use of fuzzy logic [28] to implement rules. While boolean
variables may only be true or false, fuzzy logic variables have
a truth value that ranges between 0 and 1.

Advanced rules. Some parts of a system may have different
thresholds, require specific rules, or should not be validated
with certain rules. We believe that rules should support pa-
rameters and localization for parts of a system. We plan
to add rules based on the detection strategies proposed by
Marinescu [13] in order to be able to identify issues on a global
scope. Another kind of rules that is missing are architectural
and API usage rules. During its lifetime a project is designed
with some architecture, often they are described in a plain text
and validated manually. Having this design encoded as rules
and distributed with the source of a project will not only save
time of integrators, but will also help developers to introduce
architectural disorders on the early stage. Finally, having a
high amount of diverse rules requires a dedicated approach of
providing a feedback about the system.

Realtime feedback. Recently we developed a tool called
QualityAssistant. As opposed to ViDI, it does not require a
developer to explicitly open a separate window in order to see
the quality issues of a system. QualityAssistant is a realtime



engine that keeps track of the code quality reports and allows
the developer to react. It provides plugins to the most popular
tools that Pharo developers use to read or write code. This
approach significantly reduces the feedback loop and not only
allows developers react to quality issues more quickly, but
should also allow us to collect fine grained data about the
quality rule effectiveness.

IV. EvaluationMethod and Results

The first contribution of our Ph.D. research is the Visual
Design Inspection approach and the complementing ViDI tool.
This tool was presented to Pharo community and used in a
couple of use-case studies in our group. This allowed us to
understand the main shortcomings of our approach.

Recently we have integrated a realtime quality feedback
engine called QualityAssistant into the development version of
Pharo. Just by releasing a beta version to the Pharo community,
we obtained a feedback about the issues of current static
analysis rules present in Pharo. We plan to continue using
QualityAssistant as a source of feedback about upcoming
improvements to quality rules and the way they are handled.
To obtain fine-grained data we plan to setup a reporter, which
will collect a data about how the developers are using the
tool. This will provide us with information that can shed light
on how developers react to bad quality reports, which rules
are ignored more often, and whether developers are using the
approach that we are devising.

V. Conclusions and Future Plan

During the first year we have created a prototype tool for
visual design inspection called ViDI. After that we have made
first steps towards modeling quality rules in a fuzzy and non-
boolean way. Now we are constructing a real-time quality
checker and instrumenting it in a way to bring a concept of
quality into a standard development workflow.

The expected contributions of our Ph.D. research can be
summarized as follows:
• A quality model that can be seamlessly integrated into

development tools.
• ViDI: a code review tool leveraging visualization tech-

niques and augmented with quality overview.
• QualityAssistant: a tool used both to give a realtime

feedback about the code quality to a developer and to
collect the usage data in order to improve quality rules.

• User studies to evaluate the usefulness of our approach
and of its implementation.

VI. Acknowledgements

Yuriy Tymchuk thanks the Swiss National Science foun-
dation for the support through SNF Project “ESSENTIALS”,
No. 153129.

References

[1] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of
software quality,” in Proceedings of 2nd International Conference on
Software Engineering. IEEE Computer Society Press, 1976, pp. 592 –
605.

[2] A. Riel, Object-Oriented Design Heuristics. Addison-Wesley, 1996.
[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:

elements of reusable object-oriented software. Pearson Education, 1994.
[4] K. Beck, Smalltalk Best Practice Patterns. Volume 1: Coding. Prentice

Hall, Englewood Cliffs, NJ, 1997.
[5] M. Fowler, Refactoring: improving the design of existing code. Pearson

Education India, 1999.
[6] J. Cohen, Best Kept Secrets of Peer Code Review. Smart Bear Inc.,

2006.
[7] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.

Springer-Verlag, 2006.
[8] P. Louridas, “Static code analysis,” Software, IEEE, vol. 23, no. 4, pp.

58 – 61, July 2006.
[9] A. G. Bardas, “Static code analysis,” Journal of Information Systems &

Operations Management, vol. 4, no. 2, pp. 99 – 107, 2010.
[10] I. F. Darwin, Checking C Programs with lint. ” O’Reilly Media, Inc.”,

1991.
[11] N. Ayewah, W. Pugh, D. Hovemeyer, D. Morgenthaler, and J. Penix,

“Using static analysis to find bugs,” Software, IEEE, vol. 25, no. 5, pp.
22 – 29, Sept 2008.

[12] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceed-
ings of 35th International Conference on Software Engineering, 2013,
pp. 672 – 681.

[13] R. Marinescu, “Detection strategies: metrics-based rules for detecting
design flaws,” in Proceedings of 20th IEEE International Conference
on Software Maintenance, 2004, pp. 350 – 359.

[14] N. Moha, Y. Guéhéneuc, L. Duchien, and A. Le Meur, “Decor: A method
for the specification and detection of code and design smells,” IEEE
Transactions on Software Engineering, vol. 36, no. 1, pp. 20 – 36, Jan
2010.

[15] F. Khomh, S. Vaucher, Y.-G. Gueheneuc, and H. Sahraoui, “A bayesian
approach for the detection of code and design smells,” in Proceedings
of 9th International Conference on Quality Software, 2009, pp. 305 –
314.

[16] P. Caserta and O. Zendra, “Visualization of the static aspects of software:
A survey,” Visualization and Computer Graphics, IEEE Transactions on,
vol. 17, no. 7, pp. 913–933, July 2011.

[17] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration:
improving software quality and reducing risk. Pearson Education, 2007.

[18] G. A. Campbell and P. P. Papapetrou, SonarQube in Action, 1st ed.
Manning Publications Co., 2013.

[19] M. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Syst. J., vol. 15, no. 3, pp. 182 – 211, Sep. 1976.

[20] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of 35th ACM/IEEE International
Conference on Software Engineering, 2013, pp. 712 – 721.

[21] V. Balachandran, “Fix-it: An extensible code auto-fix component in
review bot,” in Proceedings of 13th IEEE International Working Con-
ference on Source Code Analysis and Manipulation, 2013, pp. 167–172.

[22] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Proceedings
of 37th IEEE/ACM International Conference on Software Engineering.
IEEE, 2015, pp. 598 – 608.

[23] Y. Tymchuk, A. Mocci, and M. Lanza, “Code Review: Veni, ViDI, Vici,”
in Proceedings of 22nd IEEE International Conference on Software
Analysis, Evolution, and Reengineering. IEEE, 2015, pp. 151 – 160.

[24] ——, “Vidi: The visual design inspector,” in Proceedings of 37th
IEEE/ACM International Conference on Software Engineering, Tool
Demo Track. IEEE, 2015, pp. 653 – 656.

[25] D. Roberts, J. Brant, and R. Johnson, “A refactoring tool for smalltalk,”
Theor. Pract. Object Syst., vol. 3, no. 4, pp. 253 – 263, Oct. 1997.

[26] R. Wettel, “Software systems as cities,” Ph.D. dissertation, University
of Lugano, Switzerland, Sep. 2010.

[27] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: A
controlled experiment,” in Proceedings of 33rd International Conference
on Software Engineeering. ACM, 2011, pp. 551 – 560.

[28] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic. Prentice Hall New
Jersey, 1995, vol. 4.


