
What if Clippy Would Criticize Your Code?
Yuriy Tymchuk

REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract—Modern development tools can aid in software
quality assessment by using static analysis. Some of these tools
are integrated into a development environment while others work
outside of it. Although both approaches have their pros and cons
there is no clear evidence whether one of them ensures a better
quality of a software system.

In order to understand which kind of tools performs better,
we surveyed the developers of one open source community about
their experience with both kinds of tools. The results show that
developers may prefer integrated tools over external ones.

I. Introduction

Quality of code in modern software systems is as important
as their functionality. Bad code quality may result in additional
costs required to maintain and evolve the software system.
One of the most common practices to ensure a good quality of
software is a code review [1]. Manually reviewing code is time-
consuming [2]. To reduce the reviewers effort, static analysis
tools can be used to automatically detect bad patterns in source
code or to validate a system against some metrics [3], [4]. One
of the most popular static analyzers is the FindBugs tool which
automatically detects potential bugs in Java code [5].

Many static analyzers are standalone tools that can be run
on a source code and produce a report about the violations of
some coding rules. On the other hand there are some analyzers
which are integrated into development tools. For example
IntelliJ IDEA1 is a Java integrated development environment
(IDE) which provides a live statical analyzer feedback directly
in the code editor. Another example is the Tricorder tool which
provides static analysis feedback during a pre-commit code
review [6].

Having a static analyzer integrated into your development
environment can be distracting, as it will interrupt you with
every critic that appears in your code. This may be frustrating
as often during development there are incomplete pieces of
implementation that can become a source of critics. People
usually reference Clippy — the infamous Microsoft Office
Assistant during such situations, as it was causing more
distraction than providing aid. On the other hand running
external tools usually takes more time, and developers tend
to ignore this practice. Maybe having a live feedback about
your code may motivate developers to keep the quality at a
good level.

We want to investigate whether integrated quality analyzers
perform better than external ones. For this purpose we are
working with Pharo2 a dynamic object-oriented language and
IDE inspired by Smalltalk [7]. We use Pharo because it is easy

1https://www.jetbrains.com/idea/
2http://pharo.org/

1 2

3

Fig. 1: Critic Browser panes: 1 quality rules; 2 rule’s critics;
3 criticized source code.

to integrate new features in the IDE, the community around
it is active, diverse and has experienced software engineers.
Pharo developers use a static analyzer called SmallLint [8]. At
this moment it has 120 quality rules grouped into 6 categories
such as bugs, style and optimization. A violation of a quality
rule by some piece of code is called a critic. While SmallLint
simply defines a model of rules and an infrastructure to run
them, it is more convenient to use a graphical user interface
(GUI) to work with critics. Before beginning our study the
only available GUI tool for SmallLint in Pharo was Critic
Browser. It is an external tool, which means that in order to
use Critic Browser a developer has to leave the place where he
or she is developing code. Not having any static analyzer for
Pharo with live feedback can provide us with valuable data of
how the developers were treating code quality before having
an integrated live–feedback tool. Later we plan to compare it
with the experience of using such a tool.

II. Critic Browser

Critic Browser is a graphical tool that allows a developer
to select a subset of SmallLint quality rules that will be used
to analyze a selected list of software packages. The result of
this analysis is presented in a window on Figure 1.

In the quality rules pane the rules are grouped into cate-
gories and presented as tree list. When a rule is selected, all
the critics produced by these rules are displayed in the critics
pane. At the same time the rule’s rationale is displayed in the
source code pane.

The critics pane contains a list of classes and methods that
violate the selected rule. Selecting one of them will show its
source code, and allow one to mark the critic as false positive.



(a) Usage of Critic Browser (b) Usage of Critic Browser features. The features are situated on X axis. Y axis corresponds
to the number of responses

Fig. 2: Usage of Critic Browser and its features

(a) Experience in years (b) Experience source

Fig. 3: Development experience of Critic Browser survey participants

Certain rules allow automated resolution of the critic by source
code rewriting.

The source code pane displays the source code of a selected
entity and highlights a section detected by the quality rule.
A developer can modify the code in place and save it. For
the rules that allow an automatic resolution, a unified diff of
proposed changes is presented.

III. Critics Browser Survey

In order to understand how Pharo developers work with
static analysis we conducted a survey while Critic Browser
was the only static analysis tool available in Pharo.

In total 46 developers participated in the survey. They could
identify their programming experience in years both for Pharo
and Smalltalk in general. Also participants could provide the
source of their experience as either academia or industry. The
summary of participants’ experience is shown on the Figure 3.
Most of participants’ experience in Pharo is almost uniformly
distributed on a range from 0 to 6 years. Also the participants
have a diverse experience in Smalltalk development, with a
large group of developing in Smalltalk for more than 10 years.
The number of participants from academia is almost twice as
high as the number of participants from industry.

In this survey we wanted to obtain the answers for the
following questions:

1) How often do developers use Critic Browser?
2) How often do developers automatically resolve critics?
3) How often do developers mark a critic as a false positive

because critic is not important?

Fig. 4: Coding area of Nautilus with QualityAssistant critics below.

4) How often do developers mark a critic as a false positive
because they don’t have time to resolve it now?

For the first question we have asked the participants to
provide an answer on 5-point Likert [9] scale: 1) daily
2) weekly 3) monthly 4) yearly 5) never. The responses that
also include participants who are not familiar with Critic
Browser are shown on Figure 2a. About 50% of developers are
using Critic Browser less often than once a week. Usually a
week of programming can change the software dramatically.
Also 25% of developers use the tool less often that once a
month, which can be treaded as not using the tool at all.

We also asked developers whether they are familiar with
each feature (the last two questions share a feature which is
marking critic as false-positive). For these questions we used
a 5-point Likert scale: 1) never 2) rarely 3) sometimes 4) often
5) always. The responses are shown as a stacked area chart
on Figure 2b. The features are situated on the X axis and
the number of responses is represented on Y axis. Each area
corresponds to a different answer option.

IV. QualityAssistant

To understand how developers react to a live feedback about
their code we have developed QualityAssistant (QA). It has a
live quality feedback engine based on SmallLint, and plugins
for the tools commonly used in Pharo development process.

The main plugin of QualityAssistant works with Nautilus,
the code browser and editor most commonly used for Pharo
development. This plugin appears as a list of critics below the
coding area, as can be seen in Figure 4.

Each critic has a designated severity icon which can be one
of: information, warning or error. QualityAssistant relies on
SmallLint and so provides features similar to Critic Browser.



(a) Codding browser (b) Inspector (c) Spotter

Fig. 5: Usefullness of QualityAssistant plugins

Fig. 6: Usage of QualityAssistant features. The features are situated on X axis. Y axis corresponds to the number of responses

Clicking on a list item which represents a critic will highlight
a relevant piece of code. Also for each critic a user is able
to read the description and to ban the critic. QualityAssistant
also allows one to ban a critic for a higher scope i.e., a critic
of a method can be banned on a level of a class and so it will
not be applied anymore to the methods of that class. For the
rules which provide automated resolution the user can preview
the proposed code changes, and apply them if desired.

For each critic a user can press “thumbs up” or “thumbs
down” buttons situated on the right side of the list. By doing
this he or she can send us a feedback of whether the critic was
helpful to him (her) or not. Optionally a textual description
can be also provided with the feedback. By collecting this
data we are able to quickly identify issues in the quality rules
and detect which rules are not welcomed by the developers.

QualityAssistant also provides plugins for the Inspector and
Spotter tools. Inspector is a tool that allows developers to
inspect objects in Pharo [10]. Objects may have different
representations, and a user can select an object from a pre-
sentation and inspect it. This enables continuous inspection
of objects which is useful during software development.In
Pharo everything is an object, including methods and classes.
This allowed us to create a special inspector presentation for
method and class objects which displays critics about them.
Moreover developers can select and inspect a critic to obtain
more information about it.

Spotter is a unified search interface that spans many
scopes [11]. One can use spotter to search for tools, or to
search for a class, dive into a class to see its components (e.g.,
methods) and perform a search among these components. As
Spotter allows various extensions, QualityAssistant adds critics
as components of a class or method. This way if a developer

(a) Experience in years (b) Experience source

Fig. 7: Development experience of QualityAssistant survey partici-
pants

dives into a method or a class, he encounters related critics.

V. QualityAssistant Survey

Almost two months after QualityAssistant was integrated
into the development version of Pharo, we conducted a second
survey to understand how developers were using it. The survey
had similar structure to the one described in Section III. 29
developers participated in this survey, and their development
experience summary is shown in Figure 7. In this survey most
of the participants have from 1 to 3 years of development
experience both in Pharo and Smalltalk. Also there are almost
no participants with less than 1 year of experience. The number
of participants from academia is three times as large as the
number of participants from industry.

In this survey we asked developers to evaluate usefulness of
all three plugins of QualityAssistant. Participants had to grade
the main coding browser plugin on a 7-point Likert scale:
1) very useful 2) useful 3) sometimes useful 4) not influential
5) sometimes disturbing 6) disturbing 7) very disturbing. For



the inspector and spotter plugins we used similar 5-point Likert
scale that did not include extreme options 1) and 7). The
results of these questions are shown in Figure 5.

As opposed to Critic Browser, developers are using Qual-
ityAssistant all the time that they spend while programming.
According to the responses about 75% of the developers find
the main coding browser plugin useful in some way. More
than a half of participants does not know about the inspector
and spotter plugins, but the majority of those who know tend
to find them useful to some extent.

We have also selected six features that the coding browser
plugin provides:

1) Display the description of a rule.
2) Highlight the part of the code that a critic refers to.
3) View the diff of a proposed automated critic resolution.
4) Apply an automated critic resolution.
5) Ban a critic for the entity it refers to.
6) Ban a critic for a more general scope.

We asked participants whether they are familiar with each
feature. In case they were familiar we asked them to specify
how often they were using a feature out of 5-point Likert
scale: 1) always 2) often 3) sometimes 4) rarely 5) never. If
the participants did not know about a feature we asked them
whether they plan to use it. As can be seen in Figure 6, many
participants do not know about QualityAssistant’s features,
but are planning to use them. The only two features that
some developers don’t want to use are related to banning
rules, which shows that we have to pay more attention while
designing this kind of features.

Integration of QualityAssistant into the development version
of Pharo facilitated changes in SmallLint rules. We decided to
choose two major diverse changes and ask whether developers
like them. For the first change we selected a complete re-
moval of “Probably missing yourself” rule. The rule checked
whether a certain method is called in the end of method
cascade, because in some cases it could be useful. In reality
however this rule was generating many false–positive critics
and was distracting developers more than aiding them. For the
second change we have selected an introduction of a new rule
that enforces to use ifNotEmpty: and ifNotNil: methods
instead of ifNotEmptyDo: and ifNotNilDo: respectively.
This rule describes API usage, and originated because methods
ifNotEmptyDo: and ifNotNilDo: should not be used, but
are kept in the system for compatibility reasons. For each
change we have asked developers to rate the change on the
5-point Likert scale: 1) positive 2) slightly positive 3) neutral
4) slightly negative 5) negative. As can be seen in Figure 8,
developers are mostly positive about the changes made to the
SmallLint rules. This shows that QualityAssistant indeed drew
attention to the quality rules and positively influenced changes.

VI. Survey Analysis and FutureWork
Both informal observation and surveys show that QualityAs-

sistant is well accepted by developers. About 75% of them find
the main coding browser plugin useful in some way. This also
amounts to more than 90% from the developers that are aware

(a) Removal of “miss-
ing yourself” rule

(b) Addition of “use ifNotEmpty: method
instead of ifNotEmptyDo:” rule

Fig. 8: Reaction to the changes in rules

of QualityAssistant. This is a very high positive feedback ratio
which shows that developers like QualityAssistant.

We still need to verify whether the tools like QualityAssis-
tant really impact the quality of the developed software more
than the tools like Critic Browser.

We have almost integrated a usage recorder that will record
developers’ interaction with QualityAssistant and send the
collected data to our server. This functionality will be activated
only if the developer agrees to share the usage data with us.
We plan to use the data for further investigation on whether
live-feedback integrated static analysis tools are more useful
than the external ones. Also we plan to use this data to improve
QualityAssistant and SmallLint rules themselves.

We also plan to perform a controlled experiment to see how
QualityAssistant performs code quality tasks in comparison
with Critic Browser.

Acknowledgments

I want to thank Michele Lanza and Andrea Mocci for
providing a valuable advice during this research.

References
[1] M. Fagan, “Design and code inspections to reduce errors in program

development,” IBM Syst. J., vol. 15, no. 3, pp. 182–211, Sep. 1976.
[2] J. Cohen, Best Kept Secrets of Peer Code Review. Smart Bear Inc.,

2006.
[3] A. G. Bardas, “Static code analysis,” Journal of Information Systems &

Operations Management, vol. 4, no. 2, pp. 99 – 107, 2010.
[4] P. Louridas, “Static code analysis,” Software, IEEE, vol. 23, no. 4, pp.

58 – 61, July 2006.
[5] N. Ayewah, W. Pugh, D. Hovemeyer, D. Morgenthaler, and J. Penix,

“Using static analysis to find bugs,” Software, IEEE, vol. 25, no. 5, pp.
22 – 29, Sept 2008.

[6] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Proceedings
of 37th IEEE/ACM International Conference on Software Engineering.
IEEE, 2015, pp. 598 – 608.

[7] A. P. Black, O. Nierstrasz, S. Ducasse, and D. Pollet, Pharo by example.
Lulu, 2010.

[8] D. Roberts, J. Brant, and R. Johnson, “A refactoring tool for smalltalk,”
Theor. Pract. Object Syst., vol. 3, no. 4, pp. 253 – 263, Oct. 1997.

[9] A. N. Oppenheim, Questionnaire design, interviewing and attitude
measurement. Bloomsbury Publishing, 2000.

[10] A. Chis, O. Nierstrasz, and T. Grba, “The moldable inspector: a
framework for domain-specific object inspection,” in Proceedings of
International Workshop on Smalltalk Technologies (IWST 2014), 2014.

[11] A. Syrel1, A. Chis, T. Girba, J. Kubelka, O. Nierstrasz, and S. Reichhart,
“Spotter: Towards a unified search interface in ides,” in Proceedings of
the Companion Publication of the 2015 ACM SIG- PLAN Conference
on Systems, Programming, and Applications: Software for Humanity.
ACM, 2015, p. to be published.


