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Nowadays almost all modern IDE provides editor services
such as reference resolving while writing code to identify
where a given symbol has been defined, constraints checking
to highlight duplicate definitions, use before definition, un-
resolved reference...or code completion by proposing valid
identifier in a given context. In parallel, in maintenance, lot of
metrics or program analysis approaches rely on the identifica-
tion of dependencies between concepts. All of these services
rely on name resolution also known as symbol resolution.

Providing such services for programs written in a language
not currently supported requires as a first essential step to
develop a name resolution algorithm for this language. Dealing
with all the specific cases of the language may put a damper
on the developer’s enthusiast that will choose tools already
providing name resolution algorithm for the given language
and plug the new services to this tool. Such a solution has
the major advantage to avoid writing the name resolution
algorithm for the new language. Nevertheless, it has the major
drawback for the new service to be dependent to another tool.

Name resolution amounts to linking a name (an identifier) in
the source code to an entity of the program: in the expression
i++, the symbol i refers to a variable of the program that must
be incremented by one. The basic rule for name resolution in
lexical scoping is to look for the entity in the current scope,
e.g. a variable name will be first searched in the scope of the
function within which it appears. The entity must first match
the identifier, that is to say have the right name, second it must
match the kind of entity (variable, function, method, class) if
it is known, third in some languages the type of the name must
also matched (for example in Java methods are matched on
their signature). If a matching entity is not found in the current
scope, one searches recursively in the containing scope.

But this generic algorithm has many variations according to
the programming language. Here are the specificities of some
languages:

¢ In C, there is a global scope for the entire program and
a local scope for each function. Functions can only be
defined at the global scope, variables and types can be
defined globally or locally.

o Pascal has the same global and local scopes as C, but all
scopes can include functions (or procedures), types, and
variables.

Pascal also has the with instruction that creates a
temporary scope for a given structured type.

o In OO languages, on top of lexical inclusion of scopes
(method scope included in the scope of its class), inheri-

tance also defines an inclusion of scopes: the scope of a
subclass is included in the scope of its superclass.

0O languages also assume two implicit variables, this
(or self) and super, that are never defined but acces-
sible within the scope of a class.

One can assume that every individual programming lan-
guage will have a set of specific constraints or rules that affects
how name resolution works. It is clear from this list that a truly
generic name resolution mechanism cannot be defined. There
are too many rules depending on the language. Nevertheless,
some characteristics are common to every languages. Our
generic resolution algorithm exploits these common points
while letting some parts to adapt. Before detailing the algo-
rithm, we present the AST metamodel that enables a unified
representation of programs written in various languages and
serve as base to our approach. Such AST Metamodel is
an effort similar to Famix [DAB™11], the Dagsthul Middle
Metamodel [LTPO4]] or ASTM [AST11] for structural source
code representation but at the AST level.

ASTM defines a core set of modeling elements that are
common to many programming languages; it is the union
of concepts from almost all the languages. It considers
object-oriented programming languages with concepts such
as ClassType, ExceptionType or AccessKind. It has also
concepts specific to procedural programming languages such
as JumpStatement or Pointer. In total ASTM of the OMG
defines 188 concepts. With so many concepts, the metamodel
is hard to understand. Moreover, it is difficult to develop an
algorithm adapted to all languages because of the conceptual
difficulty of dealing with so many different concepts with
definitions sometimes unclear. For example, although Java and
Pharo, both have packages, classes and methods, the rules for
scoping are different. This implies that having all the concepts
in the metamodel does not prevent us from having to specialize
them for each language.

Our metamodel, FAST, is defined as the intersection of all
programming languages. By doing this, we have a metamodel
with less than 20 concepts that can still accommodate the same
large spectrum of programming languages while being much
easier to apprehend and extend.

It starts with an abstract concept FASTEntity serving as
the root class of the FAST metamodel. A FASTEntity may
have a scope FASTScope or not. Four types of entities are
distinguished:

« A FASTBehaviouralEntity is an abstract concept for

all entities having a behavior like methods or functions.



Such entities may be named (in most cases) or not (e.g.,
lambda-functions).

« A FASTStatement is also an abstract concept. We chose
to be conservative and did not include any specific
statement in the core FAST since they do not appear in
all languages.

Statements can be FASTStatementBlock, for example
to represent the body of a function.

o A FASTExpression is an abstract concept that has a
value. Again it would be difficult to try to be too specific
here as even arithmetic expressions can be treated in
different ways by different languages (e.g., Pharo, Lisp).
We believe some literals (FASTLiteral) are truly generic
and included them.

o A FASTNamedEntity represents an identifier.

All these concepts are very generic and exist in any lan-
guage. They don’t capture the specificity of any language
or even any paradigm (procedural, object, list...). Our name
resolution algorithm relies only on these concepts making it
generic.

The generic algorithm is decomposed in two parts: lookup
and selection as illustrated in Figure [I}
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Figure 1. Sketch of the algorithm

The input of the name resolution algorithm is the name of a
given AST node. In details, the lookup searches entities with
this name and specified in the current scope of this AST node.
Then it recursively search candidate entities in the containing
scopes of the node where the name appears. Candidates are
returned in order of proximity; candidates in the immediate
scope appear before candidates from a parent scope. This rule
is one of the foundations of lexical scoping and is therefore
generic. The output of this first part is an ordered list of
candidate entities.

Candidates are matched on their name, and the kind of the
entity (a function, a variable, etc.) Mapping of the name is very
simple. Mapping of the entity kind is delegated to the AST
node that contains the name, i.e., a FASTFunction node
for a Pascal program would only accept FAMIXFunction
entities as matches. In this sense, this part of the algorithm is
as generic as it can be, by delegating a part of the work to the
AST nodes which are created by the parser for the language.

Given an ordered list of candidate entities, the selection
algorithm will return the first candidate that matches the name
resolution rules of the language.

This part is more dependent of the language but may be
made generic by a kind of double-dispatching similar to what
we did for the matching of the kind of entity in the lookup.

Each element of the input ordered list of candidate entities is
successively studied. By construction, it matches the searched
name and the expected kind. We now check if the (FAMIX)
entity corresponding to the AST node input of the name
resolution algorithm may access to this candidate entity or
not. Each non accessible entity is eliminated from the list
of candidates. The first entity satisfying this accessibility
condition is the searched entity; it corresponds to the output
of the name resolution algorithm.

To check the accessibility of the entities, several rules de-
pending of the used language have been implemented. Mostly,
these rules correspond to the visibility rules associated to the
access modifiers. Thus, the access modifier of the studied
candidate is analyzed and the corresponding accessibility rules
are checked through the call of its implementation.

We have adapted FAST and the generic algorithm for name
resolution to three different languages: Cobol, Pharo, and Java
by following the following process:

o Specializing the FAST core metamodel by adding ele-
ments necessary to represent the concepts of this lan-

guage;

o Writing a parser for the language and generating the AST;

o Deciding which FAST elements specific to the language
have a scope/namespace, and;

e Choosing (eventually by implementing it) the identifica-
tion strategy i.e., the accessibility rules.
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